Synthesis, X-ray structure and reactivity of cyclopalladated complexes of hydrazones of 1 H -indole-3-carboxaldehyde

Stefano Tollari ${ }^{\text {a }}$, Giovanni Palmisano ${ }^{\text {b }}$, Francesco Demartin ${ }^{\text {c }}$, Maria Grassi ${ }^{\text {a }}$, Stefano Magnaghi ${ }^{\text {a }}$, Sergio Cenini ${ }^{\text {a,* }}$
" Dipartimento di Chimica Inorganica, Metallorganica ed Analitica and Centro CNR, Via Venezian 21, 20133 Milano, Italy
${ }^{\text {b }}$ Dipartimento di Chimica Organica ed Industriale, Via Venezian 21, 20133 Milano, Italy
${ }^{\text {c }}$ Istituto di Chimica Strutturistica Inorganica, Via Venezian 2I, 20133 Milano, Italy

Received 27 May 1994

Abstract

By reaction of $\mathrm{Li}_{2}\left[\mathrm{PdCl}_{4}\right]$ with substituted hydrazones of $1 H$-indole-3-carboxaldehyde the corresponding cyclopalladated complexes have been isolated and characterized. Compound $\mathbf{1 a}\left[\mathrm{C}_{11} \mathrm{H}_{10} \mathrm{ClN}_{3} \mathrm{OPd}\right]$ reacts with PPh_{3} by halogen displacement giving the cationic complex 5 the X-ray structure of which has revealed metallation at position 4 of the indole hydrazone, which is terdentate forming a [5,6]-fused ring system.

Keywords: Palladium; Cyclopalladation; X-ray structure; Aldehyde hydrazones; Metallation; Hydrazones

1. Introduction

Cyclometallation reactions have been the subject of many investigations in recent years [1,2], and cyclopalladated complexes have found various applications in organic synthesis [1,3]. Many examples are known for benzene and heteroaromatic derivatives but not for indole compounds. In particular, Nonoyama has studied the cyclopalladation of hydrazones derived from 1-[(4-methylphenyl)sulfonyl]-3-acetylpyrrole with acetydrazide and related derivatives [4]. We report here the attempted cyclopalladation of the indole ring by reaction of $\mathrm{Li}_{2}\left[\mathrm{PdCl}_{4}\right]$ with hydrazones of $1 H$-indole-3carboxaldehyde.

2. Results and discussion

By reactions of $\mathrm{Li}_{2}\left[\mathrm{PdCl}_{4}\right]$ with the hydrazones $\mathbf{1 - 4}$ in methanol, the corresponding cyclopalladated com-

[^0]plexes have been isolated in good overall yield [Eq. (1)] (Table 1).

$\mathrm{R}^{1}=\mathrm{H}$; (1) $\mathrm{R}^{2}=\mathrm{Me}$; (2) $\mathrm{R}^{2}=\mathrm{OEt}$; (3) $\mathrm{R}^{2}=\mathrm{NH}_{2}$; $\mathrm{R}^{1}=\mathrm{SO}_{2} \mathrm{Me}$: (4) $\mathrm{R}^{2}=\mathrm{Me}$

The proposed structure with palladation at position 4 of the terdentate indole residue (peri-metallation) which forms a doubly-chelated metallacycle, is supported by the reactivity of compound 1 a with PPh_{3} (see later) and by spectroscopic data (Tables 1,2 and 3).

In the IR spectra, $\nu(\mathrm{C}=\mathrm{O})$ shifts to lower frequencies upon formation of the complexes (Table 1), indicating coordination of the carbonyl group of the hydrazone, but the $\nu(\mathrm{NH})$ shifts are not readily explicable. Compound 4a showed the expected absorptions (Table 1) and bands due to the $-\mathrm{SO}_{2}$ - group. The far IR spectrum of compound la exhibited bands at 352 (m), $328.8(\mathrm{~m})$ and $287(\mathrm{~m}) \mathrm{cm}^{-1}$. The absorption at 328.8

Table 1
Analytical data and selected IR absorptions ${ }^{\text {a }}$

Compound	$\mathrm{C}^{\text {b }}$	$\mathrm{H}^{\text {b }}$	$\mathrm{N}^{\text {b }}$	$\nu(\mathrm{N}-\mathrm{H})$	$\nu(\mathrm{C}=\mathrm{O})$	$\nu(\mathrm{C}=\mathrm{N})$
1	65.4	5.5	20.8	3240-3140	1650	1574
	(65.7)	(5.5)	(20.4)			
1a	38.4	3.0	11.9	3272-3213	1625	1580
	(38.2)	(2.8)	(12.1)			
2	61.7	5.3	18.1	3260-3200	1715	1570
	(62.3)	(5.6)	(18.2)			
2a	38.8	3.2	10.7	3349-3174	1633	1580
	(37.1)	(3.1)	(10.3)			
3	58.8	5.0	27.1	3505-3485 to 3369-3200	1668	1575
	(59.4)	(4.9)	(27.7)			
3a	34.2	2.7	16.8	3300 (broad)	1622	1577
	(35.0)	(2.6)	(16.4)			
$4^{\text {d }}$	51.4	4.5	14.7	3245-3205	1656	1554
	(51.6)	(4.7)	(15.0)			
$4 a^{c}$	34.9	9.6	3.1	3172-3113	1622	1584
	(34.3)	(10.1)	(2.9)			
$5^{\text {c }}$	56.9	3.9	6.4	3325	1600	1557
	(56.8)	(4.1)	(7.0)			

$\overline{{ }^{\text {a }} \mathrm{cm}^{-1} \text {, Nujol mull. }{ }^{\mathrm{b}} \text { Found (calc.) (\%). }{ }^{\text {c }} \text { Cationic, cyclopalladated complex with } \mathrm{PPh}_{3} \text { as ligand [FAB }{ }^{+} \text {, glycerine; } m / z 568\left(\mathrm{C}_{29} \mathrm{H}_{25} \mathrm{~N}_{3} \mathrm{OPPd}{ }^{+}\right) ~}$ $399,358,334,306,263] .^{\mathrm{d}} v_{\text {asym }}\left(\mathrm{SO}_{2}\right)=1352, v_{\text {sym }}\left(\mathrm{SO}_{2}\right)=1124 .^{\mathrm{e}} v_{\text {asym }}\left(\mathrm{SO}_{2}\right)=1350, v_{\text {sym }}\left(\mathrm{SO}_{2}\right)=1152$.

Table 2
${ }^{1} \mathrm{H}^{\text {a }}$ NMR data (δ in ppm; J in Hz ; DMSO- d_{6}) for 1-4, cyclopalladated complexes 1a-4a and the cationic complex 5

${ }^{a}$ First-order analysis. ${ }^{b}$ Values for the syn isomer. ${ }^{c}$ On treatment with $\mathrm{D}_{2} \mathrm{O}$ becomes a singlet. ${ }^{d}$ On treatment with $\mathrm{D}_{2} \mathrm{O}$ this signal disappeared. ${ }^{\mathrm{e}}$ At 8.61 ppm anotehr signal due to the anti isomer was detected. ${ }^{4}$ After treatment with $\mathrm{D}_{2} \mathrm{O}$ this became a triplet. ${ }^{\mathrm{g}}$ Two signals were detected at 11.73 and 11.78 ppm. ${ }^{\mathrm{h}}$ Two signals were observed at 11.25 and 11.39 ppm , due to syn/anti isomers. ${ }^{i}$ One signal at 42 ppm was observed in the ${ }^{31} \mathrm{P}$ NMR spectrum. ${ }^{1}$ Covered by absorption of PPh_{3} at $7.44-7.84 \mathrm{ppm}$.
cm^{-1} is probably attributable to $\nu(\mathrm{Pd}-\mathrm{Cl})$, since it is absent in compound 5 where chlorine is not coordinated (see later). Finally, the out-of-plane bending region of the aromatic hydrogens was not useful for the structure determination, since we did not find a regular trend in the number of absorptions for either the free hydrazone or the cyclopalladated complexes.

Compounds 1-5 and 1a-4a have been characterized by ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectroscopy. Selected NMR data are listed in Tables 2 and 3. Owing to overlapping, particularly in the aromatic region, the assignment of ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra has required the combination of one- and two-dimensional techniques. For example, in the ${ }^{1} \mathrm{H}$ spectrum of complex 1a the observation of two exchangeable broad singlets at 13.52 and 11.93 ppm as well as of NOE effect between the $\mathrm{CH}_{3}-\mathrm{CO}$ singlet at 2.21 ppm and the singlet at 13.52 ppm has allowed us to assign $\mathrm{H}(10)$ and $\mathrm{H}(1)$ (at 13.52 and 11.93 ppm , respectively). The assignment of the other resonances of the spectrum (Table 2) has been confirmed by ${ }^{1} \mathrm{H} 2 \mathrm{D}$ COSY and ${ }^{1} \mathrm{H}$ 2D NOESY experiments. From the ${ }^{1} \mathrm{H}$ NMR spectrum, the assignment of the protonated carbons has been straightforward on the basis of two-dimensional ${ }^{1} \mathrm{H}^{13} \mathrm{C}$ correlation spectroscopy. The NMR findings of the corresponding free hydrazone 1 revealed the presence of syn/anti isomers (ca. 1:2.5 ratio). As expected, the two isomers exhibit very similar carbon and proton spectra and their different stereostructure mainly affects the chemical shifts of carbons $\mathrm{C}(12), \mathrm{C}(8), \mathrm{C}(11)$, as well as those of $\mathrm{H}(8)$, $\mathrm{H}(10), \mathrm{H}(12)$. Obviously the syn converts to the anti isomer in order to give the cyclopalladated derivative. The characterization of the other compounds was made in a similar manner and their relative data are shown in Tables 2 and 3.

The NMR data afford further evidence for the proposed structures. Obviously, the resonance of $\mathrm{H}(4)$ was absent in the spectra of $\mathbf{1 a - 4 a}$ and $\mathbf{5}$. Comparing the ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR findings for $\mathbf{1 - 4}$ and $\mathbf{1 a - 4 a}$, in the latter a strong downfield shift for $H(5), H(10)$ and
$\mathrm{C}(5)$ idicates that palladation occurs at position 4 of the indole and that the $\mathrm{CO}-\mathrm{NH}-\mathrm{N}$ - group is directly involved in coordination. Compound 1 a reacts with PPh_{3} in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ by halogen displacement giving the cationic metallated complex 5 [Eq. (2)].

In the IR spectrum (Table 1), compound $\mathbf{5}$ shows the expected absorptions with a remarkable shift to lower frequencies of $\nu(\mathrm{C}=\mathrm{O})$ with respect to the free hydrazone. As already pointed out, $\nu(\mathrm{Pd}-\mathrm{Cl})$ was absent in the far IR spectrum.

The structure of compound $\mathbf{5}$ has been confirmed by X-ray diffraction. Crystals of $\mathbf{5} \cdot \mathrm{CHCl}_{3}$ derive from the packing of $\left[\mathrm{C}_{29} \mathrm{H}_{25} \mathrm{~N}_{3} \mathrm{OPPd}\right]^{+}$cations, Cl^{-} anions and clathrated CHCl_{3} solvent molecules. The shortest interactions between cations and anions are: $\mathrm{Cl}(1) \cdots \mathrm{H}(\mathrm{N} 8), 2.22(5) \AA$; and $\mathrm{Cl}(1) \cdots \mathrm{H}(\mathrm{N} 3), 2.38(5)$ \AA. The remaining contacts, including also those involving the chloroform molecules, are not shorter than the sum of the van der Waals radii. A perspective view of the $\left[\mathrm{C}_{29} \mathrm{H}_{25} \mathrm{~N}_{3} \mathrm{OPPd}\right]^{+}$cation is shown in Fig. 1. It contains a $[5,6]$ fused-ring system, arising from terdentate coordination of the hydrazone. The six-membered metaliacycle displays a boat-like conformation with the Pd and the $\mathrm{C}(6)$ atoms 0.14 and $0.04 \AA$, respectively, above the least-squares plane defined by the $N(4)$, $C(5), C(10)$ and $C(11)$. The five-membered metallacycle posseses an envelope conformation; the Pd atom is $0.22 \AA$ above the plane passing through $\mathrm{N}(4), \mathrm{N}(3)$, $\mathrm{C}(2)$ and $\mathrm{O}(1)$, whereas the $\mathrm{N}(4)-\mathrm{N}(3)-\mathrm{C}(2)-\mathrm{O}(1)$ torsion angle is $5.7(7)^{\circ}$. The coordination geometry around Pd is distorted towards tetrahedral. A similar situation

Table 3
${ }^{13} \mathrm{C}$ NMR data (δ in ppm; DMSO- d_{6}) for $1-4$, cyclopalladated complexes 1a-4a and the cationic complex 5

Compound	C(2)	C(3)	C(3a)	C(4)	C(5)	C(6)	C(7)	C(7a)	C(8)	C(11)	C(12)
${ }^{\text {b }}$	129.9	111.5	124.0	121.4	120.3	122.3	111.8	136.8	139.8	171.0	20.3
			(124.2)	(121.8)	(120.1)				(142.7)	(164.0)	(21.6)
1 a	134.1	114.2	125.3	118.9	131.1	122.1	109.2	133.2	140.4	170.2	18.2
2	129.1	111.8	124.4	120.1	121.7	122.3	111.6	136.8	140.9	158.4	a
2a	129.8	114.0	122.8	119.4	129.8	122.1	109.8	132.3	138.3	159.1	a
3	129.7	113.6	123.9	121.7	122.3	120.2	114.2	136.8	137.5	157.9	
3a	125.6	115.7	125.3	120.3	127.5	122.3	110.3	132.3	135.8	160.1	
$4^{\text {b }}$	129.1	112.8	125.8	122.6	126.8	122.4	116.7	135.3	140.2	171.4	19.4
			(125.3)	(122.2)	(126.3)				(141.3)	(165.2)	(20.2)
4a	129.6	114.3	126.4	120.8	132.4	121.8	114.3	132.4	138.6	172.6	18.3
5	134.4	114.2	124.9	120.1	131.1	122.2	109.3	133.4	140.5	170.2	18.2

${ }^{\text {a }}$ For the $\mathrm{OCH}_{2} \mathrm{CH}_{3}$ group 14.5 and 59.9 ppm for compound $2,14.7$ and 64.1 ppm for compound $2 \mathrm{a} .{ }^{\mathrm{h}}$ Values in parentheses are for the anti isomer.

Fig. 1. Perspective view of the $\left[\mathrm{C}_{29} \mathrm{H}_{25} \mathrm{~N}_{3} \mathrm{OPPd}\right]^{+}$cation.
in a cyclometallated complex of Pd containing a terdentate ligand has been reported [5]. Selected interatomic distances within the cation are reported in Table 4.

We are currently investigating the reactivity of compounds $\mathbf{1 a}-\mathbf{4 a}$ with several electophiles, and the reactions of $\mathrm{Li}_{2}\left[\mathrm{PdCl}_{4}\right]$ with other indole derivatives.

Table 4

Selected interatomic distances (\AA) and angles $\left({ }^{\circ}\right)$ with e.s.d.'s in paretheses

$\mathrm{Pd}-\mathrm{P}$	$2.247(1)$	$\mathrm{N}(4)-\mathrm{C}(5)$	$1.296(4)$
$\mathrm{Pd}-\mathrm{O}(1)$	$2.153(2)$	$\mathrm{N}(8)-\mathrm{C}(7)$	$1.342(5)$
$\mathrm{Pd}-\mathrm{N}(4)$	$2.074(3)$	$\mathrm{N}(8)-\mathrm{C}(9)$	$1.389(5)$
$\mathrm{Pd}-\mathrm{C}(11)$	$2.005(3)$	$\mathrm{C}(2)-\mathrm{C}(21)$	$1.496(5)$
$\mathrm{C}(5)-\mathrm{C}(6)$	$1.410(5)$	$\mathrm{C}(9)-\mathrm{C}(10)$	$1.414(5)$
$\mathrm{C}(6)-\mathrm{C}(7)$	$1.394(5)$	$\mathrm{C}(9)-\mathrm{C}(14)$	$1.387(5)$
$\mathrm{C}(6)-\mathrm{C}(10)$	$1.439(5)$	$\mathrm{C}(10)-\mathrm{C}(11)$	$1.403(5)$
$\mathrm{O}(1)-\mathrm{C}(2)$	$1.240(4)$	$\mathrm{C}(11)-\mathrm{C}(12)$	$1.408(5)$
$\mathrm{N}(3)-\mathrm{N}(4)$	$1.383(4)$	$\mathrm{C}(12)-\mathrm{C}(13)$	$1.385(5)$
$\mathrm{N}(3)-\mathrm{C}(2)$	$1.328(5)$	$\mathrm{C}(13)-\mathrm{C}(14)$	$1.382(6)$
$\mathrm{P}-\mathrm{Pd}-\mathrm{O}(1)$	$94.71(7)$	$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(7)$	$125.8(3)$
$\mathrm{P}-\mathrm{Pd}-\mathrm{N}(4)$	$170.55(8)$	$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(10)$	$126.5(3)$
$\mathrm{P}-\mathrm{Pd}-\mathrm{C}(11)$	$94.7(1)$	$\mathrm{C}(7)-\mathrm{C}(6)-\mathrm{C}(10)$	$107.3(3)$
$\mathrm{O}(1)-\mathrm{Pd}-\mathrm{N}(4)$	$76.7(1)$	$\mathrm{N}(8)-\mathrm{C}(7)-\mathrm{C}(6)$	$109.3(3)$
$\mathrm{O}(1)-\mathrm{Pd}-\mathrm{C}(11)$	$170.4(1)$	$\mathrm{N}(8)-\mathrm{C}(9)-\mathrm{C}(10)$	$107.9(3)$
$\mathrm{N}(4)-\mathrm{Pd}-\mathrm{C}(11)$	$94.1(1)$	$\mathrm{N}(8)-\mathrm{C}(9)-\mathrm{C}(14)$	$128.9(3)$
$\mathrm{C}(10)-\mathrm{C}(9)-\mathrm{C}(14)$	$123.2(3)$	$\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(11)$	$121.0(3)$
$\mathrm{C}(6)-\mathrm{C}(10)-\mathrm{C}(9)$	$105.7(3)$	$\mathrm{Pd}-\mathrm{C}(11)-\mathrm{C}(10)$	$115.8(2)$
$\mathrm{C}(6)-\mathrm{C}(10)-\mathrm{C}(11)$	$133.3(3)$	$\mathrm{Pd}-\mathrm{C}(11)-\mathrm{C}(12)$	$129.3(3)$
$\mathrm{Pd}-\mathrm{O}(1)-\mathrm{C}(2)$	$112.1(2)$	$\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{C}(12)$	$114.8(3)$
$\mathrm{N}(4)-\mathrm{N}(3)-\mathrm{C}(2)$	$118.0(2)$	$\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{C}(13)$	$123.0(4)$
$\mathrm{Pd}-\mathrm{N}(4)-\mathrm{N}(3)$	$111.2(2)$	$\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{C}(14)$	$122.6(4)$
$\mathrm{Pd}-\mathrm{N}(4)-\mathrm{C}(5)$	$131.2(2)$	$\mathrm{C}(9)-\mathrm{C}(14)-\mathrm{C}(13)$	$115.3(3)$
$\mathrm{N}(3)-\mathrm{N}(4)-\mathrm{C}(5)$	$117.7(3)$	$\mathrm{O}(1)-\mathrm{C}(2)-\mathrm{C}(21)$	$121.7(3)$
$\mathrm{C}(7)-\mathrm{N}(8)-\mathrm{C}(9)$	$109.8(3)$	$\mathrm{N}(3)-\mathrm{C}(2)-\mathrm{C}(21)$	$117.3(3)$
$\mathrm{O}(1)-\mathrm{C}(2)-\mathrm{N}(3)$	$121.0(3)$	$\mathrm{N}(4)-\mathrm{C}(5)-\mathrm{C}(6)$	$118.4(3)$

3. Experimental details

IR spectra were recorded on Perkin-Elmer 1310 and Nicolet MX-1 FT-IR spectrophotometers. NMR measurements were made on a Bruker AC-200 200 MHz spectrometer using standard [6] pulse sequences for JMOD and two-dimensional experiments. Mixing times of 1 s were used in the NOESY measurements. MS spectra was performed on a VG 7070 EQ instrument. Solvents were distilled before use. The solution of $\mathrm{Li}_{2}\left[\mathrm{PdCl}_{4}\right]$ in methanol was prepared by stirring a suspension of 1 equiv. of PdCl_{2} and 2 equiv. of LiCl in the appropriate amount of methanol overnight.

3.1. Preparation of hydrazones 1-4

For the preparation of compound 1 , a mixture of 10 mmol of 1 H -indole-3-carboxaldehyde, 10 mmol of acethydrazide and 0.1 ml of acetic acid in 20 ml of methanol was warmed on a steam bath for 2 h and allowed to stand overnight at $-10^{\circ} \mathrm{C}$. The white crystalline precipitate obtained was washed with cold ethanol and dried in air. Compounds 2 and 3 were prepared similarly by the use of semicarbazide or ethyl carbazate [7], whereas 4 was obtained by reaction of 1-(methylsulfonyl)-indole-3-carboxaldehyde with acethydrazide.

Table 5
Crystallographic data for compound (5) $\cdot \mathrm{CHCl}_{3}$

Formula	$\mathrm{C}_{30} \mathrm{H}_{26} \mathrm{Cl}_{4} \mathrm{~N}_{3} \mathrm{OPPd}$
F.W.	723.75
Crystal system	monoclinic
Space Group	$\mathrm{P} 2_{1} / \mathrm{c}$
$a(\mathrm{~A})$	17.735(2)
$b(\AA)$	$9.696(2)$
$c(\mathrm{~A})$	18.171(2)
$\beta{ }^{(}{ }^{\circ}$	99.56(1)
$V\left(\AA^{3}\right)$	3081(1)
Z	4
$D_{\text {calc. }}\left(\mathrm{g} \mathrm{cm}^{-3}\right)$	1.560
$\mu\left(\mathrm{cm}^{-1}\right)$	10.2
Min. transmis. factor	0.92
Scan mode	ω
ω-scan width (${ }^{\circ}$)	$1.0+0.35 \tan \theta$
θ-range (${ }^{\circ}$)	1-25
reciprocal	
space explored	+h, +k, ± 1
measured reflections	5752
unique observed refl.	
with $\mathrm{I}>3 \sigma$ (I)	3888
Final R and R_{w} indices $^{\text {a }}$	0.041, 0.058
No. of variables	370
GOF ${ }^{\text {b }}$	1.82
${ }^{\mathrm{a}} \mathrm{R}=[\Sigma(\mathrm{Fo}-\mathrm{k}\|\mathrm{Fc}\|) / \Sigma \mathrm{Fo}] \mathrm{R}_{\mathrm{w}}=\left[\Sigma \mathrm{w}(\mathrm{Fo}-\mathrm{k}\|\mathrm{Fc}\|)^{2} / \Sigma \mathrm{wFo}^{2}\right]^{1 / 2}$. ${ }^{\mathrm{b}} \mathrm{GOF}=\left[\Sigma \mathrm{w}(\mathrm{Fo}-\mathrm{k}\|\mathrm{Fc}\|)^{2} /\left(\mathrm{N}_{\text {observations }}-\mathrm{N}_{\text {variables }}\right)\right]^{1 / 2} \mathrm{w}=$ $1 /(\sigma(\mathrm{Fo}))^{2}, \sigma(\mathrm{Fo})=\left[\sigma^{2}(\mathrm{I})+(0.04 \mathrm{I})^{2}\right]^{1 / 2} / 2 \mathrm{FoLp}$.	

Table 6
Fractional atomic coordinates for compound (5) $\cdot \mathrm{CHCl}_{3}$ with e.s.d.'s in parentheses

Atom	x	y	z
Pd	$0.18599(2)$	0.05479(4)	$0.14390(2)$
$\mathrm{Cl}(1)$	$0.95036(7)$	$0.7607(2)$	$0.45941(7)$
$\mathrm{Cl}(2)$	0.2942(2)	0.7382(4)	0.0992(2)
Cl(3)	$0.2486(2)$	$0.6839(3)$	-0.0461(2)
$\mathrm{Cl}(4)$	$0.4032(1)$	0.7514 (3)	$0.0118(2)$
P	0.28931 (7)	$0.1896(1)$	$0.17567(7)$
O(1)	0.1971 (2)	$0.0419(4)$	$0.0279(2)$
N(3)	$0.0932(2)$	$-0.0904(5)$	0.0233 (2)
N(4)	$0.0993(2)$	-0.0800(4)	$0.1000(2)$
N(8)	0.0179(2)	$-0.1479(5)$	$0.3210(2)$
C(2)	0.1431(3)	$-0.0211(6)$	-0.0095(3)
C(5)	$0.0528(3)$	-0.1532(6)	0.1321 (3)
C(6)	$0.0542(3)$	$-0.1361(5)$	0.2093 (3)
C(7)	$0.0050(3)$	-0.1991(6)	$0.2514(3)$
C(9)	$0.0750(3)$	-0.0487(6)	0.3271 (3)
C(1))	$0.1001(3)$	-0.0392(5)	0.2573 (3)
C(11)	0.1584(3)	$0.0529(5)$	$0.2465(3)$
C(12)	$0.1870(3)$	$0.1345(6)$	$0.3090(3)$
C(13)	0.1594(3)	$0.1266(7)$	$0.3758(3)$
C(14)	$0.1033(3)$	$0.034046)$	0.3876 (3)
C(21)	$0.1318(3)$	$-0.0242(7)$	-0.0929(3)
C(99)	$0.3097(5)$	$0.784(1)$	$0.0138(5)$
C(111)	$0.3331(3)$	$0.2188(6)$	$0.0929(3)$
C(112)	0.3175 (3)	$0.3363(6)$	$0.0490(3)$
C(113)	0.3480(4)	$0.3519(7)$	-0.0151(3)
C(114)	0.3929(3)	$0.2516(8)$	-0.0383(3)
C(115)	$0.4079(4)$	$0.1332(8)$	$0.0043(4)$
C(116)	$0.3786(3)$	$0.1164(7)$	$0.0697(3)$
C(121)	0.3689 (3)	$0.1184(6)$	$0.2417(3)$
C(122)	$0.3584(3)$	$0.0026(6)$	0.2822(3)
C(123)	$0.4206(4)$	-0.0538(7)	0.3302(4)
C(124)	0.4909(4)	$0.0061(8)$	$0.3378(4)$
C(125)	0.5022(3)	$0.1205(9)$	$0.2970(4)$
C(126)	0.4416 (3)	0.1767(7)	0.2476 (3)
C(131)	0.2691(3)	$0.3629(6)$	0.2072 (3)
C(132)	$0.1986(3)$	$0.4187(6)$	0.1783(4)
C(133)	$0.1788(4)$	$0.5478(7)$	$0.1983(5)$
C(134)	0.2279(4)	$0.6245(8)$	0.2485 (4)
C(135)	0.2979(5)	$0.5707(7)$	0.2794(4)
C(136)	0.3192(4)	0.4384(7)	0.2581(4)

3.2. General conditions for cyclopalladation reactions

To a solution consisting of 0.5 mmol of $\mathrm{Li}_{2}\left[\mathrm{PdCl}_{4}\right]$ prepared in situ in 10 ml of methanol, 0.5 mmol of hydrazones $\mathbf{1 - 4}$ and 0.5 mmol of AcONa in 5 ml of methanol were added dropwise. The yellow product formed immediately. It was filtered off, washed with methanol and dried in vacuo.

3.3. Formation of compound $\mathbf{5}$

Cyclopalladated hydrazone $\mathbf{1 a}$ ($150 \mathrm{mg}, 0.473 \mathrm{mmol}$) was suspended in 10 ml of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and $115 \mathrm{mg}(0.473$ mmol) of PPh_{3} were added. The solution became orange in colour and after 17 h a yellow product precipi-
tated. It was filtered off. The product was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and precipitated by addition of $\mathrm{Et}_{2} \mathrm{O} ; 170 \mathrm{mg}$ $\left(64.3 \%\right.$) of a yellow product ($R_{\mathrm{f}}=0.47$ in AcOEt $/$ MeOH 49:1) was obtained. Suitable crystals of 5 were obtained from a chloroform solution, n-pentane being added by solvent diffusion.

3.4. X-Ray data collection and structure determination

Crystal data and other experimental details are summarized in Table 5. A prismatic crystal of approximate dimensions $0.12-0.10 \times 0.22 \mathrm{~mm}$ was used. The diffraction measurements were carried out on an Enraf-Nonius CAD4 diffractomer at room temperature, using graphite-monochromatized Mo $\mathrm{K} \alpha$ radiation ($\lambda=$ $0.71073 \AA$). The diffracted intensities were corrected for Lorentz polarization and absorption (empirical correction) [8] but not for extinction. Scattering factors for all the atomic species and anomalous dispersions corrections for scattering factors of non-hydrogen atoms were taken from Ref. [9]. The structure was solved by Patterson and Fourier methods and refined by full-matrix least-squares, minimizing the function $\Sigma w\left(\left|F_{\mathrm{o}}\right|-k\left|F_{\mathrm{c}}\right|\right)^{2}$. An anisotropic thermal parameter was assigned to all the non-hydrogen atoms. The hydrogen atoms were introduced into the structural model at calculated positions ($\mathrm{C}-\mathrm{H}, 0.95 \AA$), with the exception of those bonded to $N(3)$ and $N(8)$ which were also refined. The final difference Fourier synthesis showed maxima residuals of 0.8 e \AA^{-3}. The atomic coordinates are listed in Table 6. All the calculations were performed on a HP Vectra 486/33 computer using the Personal SDP Structure Determination Package [10]. Full lists of atomic coordinates, bond lengths and thermal parameters have been deposited at the Cambridge Crystallographic Data Centre.

References

[1] A.D. Ryabov, Synthesis, (1985) 233.
[2] M.I. Bruce, Angew. Chem., Int. Ed. Engl., I6 (1977) 73.
[3] A.D. Ryabov, R. van Eldik, G. Le Borgue and M. Pfeffer, Organometallics, 12 (1993) 1386.
[4] M. Nonoyama, Inorg. Chim. Acta, 145 (1988) 53.
[5] G. Minghetti, M.A. Cinellu. G. Chelucci, S. Gladiali, F. Demartin and M. Manassero, J. Organomet. Chem., 307 (1986) 107. [6] G.A. Morris, Magn. Reson. Chem., 24 (1986) 371.
[7] A. Alemany, M. Bernabe, E. Fernandez Alvarez, M. LoraTamayo and O. Nieto, Bull. Soc. Chim. Fr., (1967) 780.
[8] A.C. North, D.C. Phillips and F.S. Mathews, Acta Crystallogr., A24 (1968) 351.
[9] International Tables for X-ray Crystallography, Kynoch, Birmingham, UK, 1974, Vol. IV.
[10] B.A. Frenz, Comput. Phys., 2 (1962) 42; B.A. Frenz, Crystallographic Computing 5, Oxford University Press, Oxford. 1991, Chap. 11. p. 126.

[^0]: "Dedicated to Professor Fausto Calderazzo on the occasion of his 65th birthday.

 * Corresponding author.

